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‘‘Strange’’ Fermi processes and power-law nonthermal tails from
a self-consistent fractional kinetic equation

Alexander V. Milovanov and Lev M. Zelenyi
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This study advocates the application of fractional dynamics to the description of anomalous acceleration
processes in self-organized turbulent systems. Such processes~termed ‘‘strange’’ accelerations! involve both
the non-Markovian fractal time acceleration events associated with a generalized stochastic Fermi mechanism,
and the velocity-space Levy flights identified with nonlocal violent accelerations in turbulent media far from
the ~quasi!equilibrium. The ‘‘strange’’ acceleration processes are quantified by a fractional extension of the
velocity-space transport equation with fractional time and phase space derivatives. A self-consistent nonlinear
fractional kinetic equation is proposed for the stochastic fractal time accelerations near the turbulent nonequi-
librium saturation state. The ensuing self-consistent energy distribution reveals a power-law superthermal tail
c(E)}E2h with slope 6<h<7 depending on the type of acceleration process~persistent or antipersistent!.
The results obtained are in close agreement with observational data on the Earth’s magnetotail.
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Complex kinetic processes in nonlinear thermodynam
systems are often governed by self-organization mec
nisms. An example is anomalous particle transport in tw
dimensional hydrodynamic turbulent flows. In fact, above
critical value of Reynolds numberRe ~typically, ;15), the
flow evolves into a set of discrete vortices@1#. The vortices
can be considered as self-organized coherent structures
sisting of localized regions of swirling motion@1,2#. As vor-
tices trap and convect particles, the transport is enhance
large ~coherent! scales @2#. The phenomenon reveals a
anomalous dispersion law consistent with superdiffusive
havior @3#.

The effects of particle convection with coherent~vortical!
structures and the ensuing bursts of anomalous turbulent
have been recognized in low-b plasma@4#. The observed
signatures were discussed by employing self-organiza
principles@2#. Anomalous~superdiffusive! transport regimes
associated with self-organization of magnetic ‘‘vortice
~magnetic flux tubes! in the solar photosphere were analyz
in Ref. @5# in the framework of a Lie group approach.

In a high-b plasma, self-organization mechanisms cu
tomarily lead to formation of coarse-grained turbulent p
terns @6#. The nonstationary patterns, appreciably vary
with time, support stochastic acceleration phenomena do
nating the particle motion. Particle acceleration in nons
tionary coarse-grained turbulent fields can be considered
transport process in velocity space. An example is stocha
Fermi acceleration which profits from the chaotic collisio
of particles with randomly moving grains~magnetic clouds!
@7#. The term ‘‘randomly’’ is customarily identified with the
Gaussian variancêV2(t)&}t for the velocities of the scat
terersV(t). The Gaussian leads to linear time depende
^dw2(t)&}t of the mean squared particle displacement in
velocity space$w% and the standard Markovian velocity di
fusion equation@8#

]c/]t5Dwc. ~1!

Equation ~1! describes the acceleration dynamics as E
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stein’s Brownian motion in$w%. Here,Dw is the Laplacian,
and c5c(t,w) is the particle velocity distribution function
normalized by the plasma number densityn5n(t), i.e.,

E cdw5n. ~2!

Based on the Gaussian variance, Eq.~1! ignores in prin-
ciple the long-range dynamical correlations operating in t
bulent systems with self-organization@9#. The effect of cor-
relations appears in multiscale nonrandom accelera
events which do not comply with the standard velocity d
fusion ~1!. Suitable extensions of Eq.~1! to the inherently
correlated turbulent fields can be found beyond the unde
ing Einstein’s Brownian motion@10,11#. In our study, we
advocate a fractional dynamics approach@12# to a descrip-
tion of the stochastic acceleration processes in the pres
of the long-range correlations. Fractional generalizations
Einstein’s Brownian motion and the ensuing fractional
netic equations are believed to be a powerful framework@12#
which could be of use for many systems@10,12–14#.

Before we start off with the appropriate fractional exte
sion of the velocity-space diffusion Eq.~1!, we would like to
address the diverse physical implications of the fractio
derivatives over time~t! and space (w) variables. In fact, a
fractional extension of the LaplacianDw ~given by the Riesz/
Weyl fractional operator! incorporates bursty dynamics wit
multiscale long-range jumps like Levy flights@12#. Levy
flights are Markovian processes characterized by a pow
law jump length distribution and diverging varianc
^dw2(t)&→`. The problem of the diverging variance is o
ten circumvented by replacing Levy flights with Levy walk
through a spatiotemporal coupling posing a continuous
namics @12#. Conversely, a fractional generalization of th
time derivative]/]t corresponds to a continuous rando
walk process without identifiable jumps@12#. Occasionally,
such processes are referred to as fractal time random w
~FTRW’s! @15#. The FTRW’s imply a power-law waiting
time distribution functionf(t)}1/t11g leading to nonlinear
©2001 The American Physical Society01-1
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time growth^dw2(t)&}tg of the mean squared particle di
placement in the velocity space$w%. The quantityg has the
sense of fractal dimension in time@14#. In our study, we
distinguish persistent(1,g<2) and antipersistent(0<g
,1) FTRW’s, depending on the exact value ofg. Antiper-
sistent FTRW’s can be associated with a fractal time defi
on the~everywhere disconnected! Cantor set (0<g,1); this
accounts for the multiscale particle trappings in the veloc
space$w% when the fractal time does not progress. In co
trast, persistent FTRW’s operate in fractal times with dime
siong larger than 1; the implication is an enhanced contin
ous random process penalizing trappings on all time sca
Following Ref. @16#, from ^dw2(t)&}tg one arrives at the
correlation functionC(t)52g2121[const(t) for the past
and future particle displacements in the velocity space$w%.
Persistent~antipersistent! FTRW’s carry positive~negative!
correlation functionC(t) and correspond to superdiffusio
~subdiffusion! in the velocity space$w%. The FTRW’s are
essentially non-Markovian dynamical processes forgÞ1
@sinceC(t)Þ0#. The Markovian caseg51 based onC(t)
[0 reproduces the Einstein’s Brownian motion~1!.

The fractional velocity-space transport equation includ
both the FTRW’s~i.e., the fractal time random acceleration!
and the nonlocal jump statistics can be written as

]gc/]tg5¹w
sc, ~3!

where¹w
s denotes the Riesz/Weyl fractional operator of o

der 1<s<2 in the three-dimensional velocity space$w%,
and ]gc/]tg is the fractional generalization of the time d
rivative ]c/]t to ordergÞ1. ~Note that¹w

2[Dw .) Equation
~3! addresses an extension of the fractional@12,14# or
‘‘strange’’ @13# kinetics for real-space anomalous transp
processes to turbulent acceleration phenomena, such as
tal time accelerations and velocity-space Levy flights. Th
events might be termed ‘‘strange’’ acceleration processe

Velocity-space Levy flights deriving from the Riesz/We
fractional operator¹w

s of orders,2 model violent accelera
tions in the turbulent medium when a particle can alm
instantly gain a finite portion of kinetic energy from the e
vironment. Physical realizations can be found in turbul
systems in the course of the violent relaxation character
by intense energy exchange between the subsystems
volved. Examples are turbulent fluids at extremely high v
ues of the Reynolds number (Re*103) @17#. In our study, we
are mainly concerned with turbulent systems that have
ready bypassed the stage of violent relaxation.~Note that the
particles that undergo stochastic acceleration must be con
ered as a subsystem of the turbulent field.! The ensuing non-
thermal turbulent state~which can be stable or quasistable! is
sometimes termed ‘‘turbulent~quasi!equilibrium’’ @9# and is
dominated by long-range temporal correlations between
constituent subsystems. The velocity-space transport e
tion at turbulent~quasi!equilibrium follows from Eq.~3! in
the limiting cases52, when the Riesz/Weyl fractional op
erator¹w

s is reduced to the standard LaplacianDw :

]gc/]tg5Dwc. ~4!
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Equation~4! is but the fractional diffusion equation in th
velocity space$w%. This equation contains a stochastic a
celeration mechanism~to be considered as the ‘‘strange
Fermi process! which profits from particle collisions with the
long-range correlated turbulence grains.@Near the turbulence
~quasi!equilibrium, the ‘‘random’’ motion of the grains can
be associated with the non-Gaussian variance^V2(t)&}tg.#
The ‘‘strange’’ Fermi process is a fractal time accelerati
corresponding to a velocity-space FTRW with the frac
time dimension 0<g<2.

The exact definition of the fractional time derivativ
]gc/]tg on the left of Eq.~4! is given by the Riemann-
Liouville fractional operator@12#

]gc~ t,w!

]tg
5

1

G~m2g!

]m

]tmE0

t c~q,w!

~ t2q!11g2m
dq, ~5!

wherem21,g<m, m is an integer number, andG is the
Euler gamma function. The fractional derivative~5! is re-
duced to the standard first-order time derivative]c/]t for
g→1. ~This recovers the Riemann-Liouville identity.! In the
static limit g→0, relation~5! yields]0c(t,w)/]t0[c(t,w).
The power-law kernel in the operator~5! ensures the non
Markovian nature of the acceleration process~4! for gÞ1.

Assuming isotropic acceleration, we havec(t,w)
5c(t,w) andDw5Dw , wherew[uwu, and

Dwc[
1

w2

]

]w Fw2Dw

]c

]wG ~6!

is the radial part of the LaplacianDw . The quantity

Dw5
^dw2~t!&

tg
~7!

is the generalized velocity-space transport coefficientt
;l/w is the characteristic~microscopic! time step of the
acceleration process,l is the turbulence coherence leng
~i.e., the typical size of the grains!, ^dw2(t)&;g2t2 deter-
mines the mean squared variation of the particle veloc
during the time intervalt, andg denotes the particle averag
acceleration in the turbulent medium. The anomalous fac
tg ~instead oft1) stands for the fractional differentiatio
]gc/]tg on the left of Eq. ~4!. @Note that ^dw2(t)&
;g2t2(t/t)g for t@t.# Hence,

Dw;g2t2/tg;Kwg22, ~8!

where K5const(w). The anomalous scaling laws for th
transport coefficientDw versus the dimensionless parame
A[2V2/lg@1 can be derived following Ref.@18#. ~Here,V
is the characteristic velocity of the grains.! Substituting Eq.
~8! in Eq. ~4!, we get

1

K
]gc

]tg
5

1

w2

]

]w Fwg
]c

]wG . ~9!
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A general solution to Eq.~9! can be obtained for arbitrar
initial conditions in terms of the Fox functions~see Ref.
@12#!. For the sake of simplicity, here we proceed as follow
Let us multiply both sides of Eq.~9! by w42g and integrate
over the velocity space$w%: *dw[4p*0

`w2dw. On the left
of Eq. ~9!, we remove the time differentiation out of th
integral sign and replace the partial derivative]g/]tg by the
full time derivativedg/dtg. The remaining integral overw is
then reduced to the ensemble average^w42g&c . On the right
of Eq. ~9!, we integrate twice by parts, taking account of t
normalization condition~2!; the result is 3(42g)n. Conse-
quently,

dg

dtg
^w42g&c53~42g!nK. ~10!

From Eq.~10! one finds

^w42g&c5
3~42g!

G~g11!
nK3tg. ~11!

Hence the particle average velocity grows, roughly, as

^w&c;const3tz ~ t→`!, ~12!

z5g/~42g!. ~13!

Settingg51 in Eqs.~12! and~13!, one recovers the standar
one-thirds law for the random Fermi acceleration,^w&c
;t1/3, deriving from the standard velocity-space diffusio
Eq. ~1! @8#. The particle energy grows, on average, as

^E&c;const3t2z ~ t→`!. ~14!

For persistent~superdiffusive! FTRW’s (1,g<2), we have
1/3,z<1, while antipersistent~subdiffusive! FTRW’s (0
<g,1) imply 0<z,1/3. Thus the persistent~antipersis-
tent! FTRW’s are manifested in enhanced~suppressed! par-
ticle acceleration when compared to the standard~Markov-
ian! Fermi process~1!. The limiting casez51 (g52)
corresponds to ballistic acceleration along a regular tra
tory without jumps. On the contrary, the limitz50 (g50)
describes trapped particles localized at the hypersurfacew
5 const. Physical realizations of the fractal time accele
tions might be found, for instance, in the Earth’s magneto
@19# and the intergalactic medium@20#.

It is worth noting that the above consideration applies
the test particles and does not include the inverse effec
the hot plasma on the turbulent pattern. Such an effec
important near the marginal nonequilibrium saturation st
~NESS! where the plasma strongly couples with the se
organized magnetic and inductive electric turbulent fiel
The process can be considered as self-interaction of the
bulence in the nonlinear saturation regime. The s
interaction appears in the generation of magnetic turbule
grains by particles accelerated in a fluctuating inductive e
tric field. This limits the particle energy gain from the indu
tive fields and may have an impact on the energy distribu
in the turbulent system.
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The creation of turbulence grains by relatively hot pa
ticles can be described by an interaction functionalĴc
which balances the velocity diffusion termDwc on the right
hand side of Eq.~4!. By its nature, the interaction functiona
for a self-organized electromagnetic system must be q
dratic over electric currents~magnetic fields!. Hence Ĵc
;Qmn j m j n, whereQmn is the interaction matrix, andj m (m
51,2,3) denote the covariant components of the current d
sity vector in the embedding space.~Here, summation over
m51,2,3 is implied.! For isotropic turbulence, we hav
Qmn5Qdmn , whereQ is the characteristic interaction am
plitude, anddmn is the Kroneker symbol. The interactio
functional becomes, consequently,Ĵc;Qj m j m. The inclu-
sion of self-interactions leads to the extended fractional
netic equation

]gc/]tg5Dwc24pw2Qj m j m, ~15!

which incorporates both the particle stochastic accelera
(Dwc) and turbulence generation (Ĵc) terms. The factor
4pw2 in front of Ĵc;Qj m j m stands for the density of state
in the isotropic velocity space$w%. The current density com
ponents j m in Eq. ~15! are considered as functions of th
velocity w, i.e.,

j m~w!;4peE
V

w

umu2c~ t,u!du. ~16!

The integration in Eq.~16! is performed fromu;V ~i.e.,
from the characteristic velocity of the scatterers,V) up to
w@V. This includes all the turbulence self-interaction eve
until the ~initially cold! particle reaches the given velocit
w@V in the stochastic inductive electric field.~Isotropic ve-
locity space$u% is assumed:*du[4p*u2du.! Sinceumum

5u2, from Eqs. ~15! and ~16! one arrives at the self
consistent nonlinear kinetic equation in the full integrodiffe
ential form:

1

K
]gc

]tg
5

1

w2

]

]w Fwg
]c

]wG2Rw2F E
V

w

u3cduG2

, ~17!

whereR564p3e2Q/K is a constant, and the fractional tim
derivative]gc/]tg on the left hand side is given by expre
sion ~5!.

Equation~17! includes a rich variety of anomalous kinet
processes potentially operating in self-organized turbu
systems. In what follows, we are mostly interested in
stationary solution to Eq.~17!; this solution determines the
shape of the particle distribution function near the margi
NESS. The stationary distribution functionc5c(w) obeys
the integrodifferential equation

1

w2

]

]w Fwg
]c

]wG5Rw2F E
V

w

u3cduG2

, ~18!

which follows from Eq. ~17! for ]gc/]tg50. In a self-
consistent regime, the fractal time acceleration proces
1-3
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BRIEF REPORTS PHYSICAL REVIEW E 64 052101
should be associated with a dimensionless~power-law! par-
ticle distribution function in the superthermal range, i.e.,

c~w!}w2a, ~19!

where the slopea5const (w) for w@V. Substituting distri-
bution ~19! in Eq. ~18!, one finds

a5142g. ~20!

The ensuing energy distributionc(E), E}w2, becomes

c~E!}E2h, ~21!

h5a/2572g/2. ~22!

In particular, persistent FTRW’s (1,g<2) lead to 6<h
,6.5, while antipersistent FTRW’s (0<g,1), to 6.5,h
<7. Distribution~21!,~22! possesses considerable excess
ergy at the higher~superthermal! energy interval when com
pared to the exponential~Maxwell! distribution. The excess
energy is manifest from the velocity-space transport driv
by the fluctuating inductive electric fields in the turbule
medium. The slopeh572g/2 is determined by the qua
dratic nonlinearity in kinetic Eq.~15! for the turbulent elec-
tromagnetic system with self-interactions.

The nonthermal energy distributions revealing power-l
tails ~21! in the superthermal range are often modeled by
so-called ‘‘k ’’ functions @21#. The k functions can be de
rived as the canonical distributions for systems with se
organization@22#. k distributions were found for a plasm
immersed in a superthermal radiation field@23#. Zelenyi and
Milovanov @24# demonstrated thatk functions provide an
-
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extended point symmetry group for the Vlasov-Maxw
equations. Ma and Summers recognizedk functions in sto-
chastic acceleration processes governed by the whis
mode turbulence@25#. Thek parameter@21–25# is related to
the slopeh of the energy distribution~21! via k5h21.
Hencek562g/2. In view of 0<g<2 one finds 5<k<6.
This inequality locates the value ofk in a relatively narrow
interval covering the two distinct types~persistent and anti-
persistent! of the particle stochastic fractal time accelerati
in turbulent media. Kappa distribution functions have be
directly observed in the Earth’s magnetotail@21#, this being a
natural laboratory for turbulence-dominated phenome
@19#. The theoretical estimate 5<k<6 for thek parameter is
in close agreement with the magnetotail particle populat
survey by Christonet al. @21# ~p. 13 409!, who found that
‘‘for both ions and electronsk is typically in the range 4–8,
with a most probable value between 5 and 6.’’ These wid
known observational results thereby mirror the fundamen
kinetic processes operating in self-organized turbulent s
tems, rather than specific characteristics of the magneto
plasma.
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